Assume that an electric field $\overrightarrow E  = 30{x^2}\hat i$ exists in space. Then the potential difference $V_A -V_O$, where $V_O$ is the potential at the origin and $V_A$ the potential at $x = 2\, m$ is

  • A

    $-80$

  • B

    $80$

  • C

    $120$

  • D

    $-120$

Similar Questions

Electric charges of $+10\,\mu\, C, +5\,\mu\, C, -3\,\mu\, C$ and $+8\,\mu\, C$ are placed at the corners of a square of side$\sqrt 2\,m$ . The potential at the centre of the square is

Equal charges are given to two spheres of different radii. The potential will

Two small equal point charges of magnitude $q$ are suspended from a common point on the ceiling by insulating mass less strings of equal lengths. They come to equilibrium with each string making angle $\theta $ from the vertical. If the mass of each charge is $m,$ then the electrostatic potential at the centre of line joining them will be $\left( {\frac{1}{{4\pi { \in _0}}} = k} \right).$

  • [JEE MAIN 2013]

A solid conducting sphere, having a charge $Q$, is surrounded by an uncharged conducting hollow spherical shell. Let the potential difference between the surface of the solid sphere and that of the outer surface of the hollow shell be $V$. If the shell is now given a charge of $-4\, Q$, the new potential difference between the same two surface is......$V$

  • [JEE MAIN 2019]

Twenty seven drops of water of the same size are equally and similarly charged. They are then united to form a bigger drop. By what factor will the electrical potential changes.........$times$